Performance Analysis of the SHA-3 Candidates on Exotic Multi-core Architectures

نویسندگان

  • Joppe W. Bos
  • Deian Stefan
چکیده

The NIST hash function competition to design a new cryptographic hash standard ‘SHA-3’ is currently one of the hot topics in cryptologic research, its outcome heavily depends on the public evaluation of the remaining 14 candidates. There have been several cryptanalytic efforts to evaluate the security of these hash functions. Concurrently, invaluable benchmarking efforts have been made to measure the performance of the candidates on multiple architectures. In this paper we contribute to the latter; we evaluate the performance of all second-round SHA-3 candidates on two exotic platforms: the Cell Broadband Engine (Cell) and the NVIDIA Graphics Processing Units (GPUs). Firstly, we give performance estimates for each candidate based on the number of arithmetic instructions, which can be used as a starting point for evaluating the performance of the SHA-3 candidates on various platforms. Secondly, we use these generic estimates and Cell-/GPU-specific optimization techniques to give more precise figures for our target platforms, and finally, we present implementation results of all 10 non-AES based SHA-3 candidates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Evaluation of SHA-2 Standard vs. SHA-3 Finalists on Two Freescale Platforms

Embedded devices are ubiquitously involved in a large variety of security applications which heavily rely on the computation of hash functions. Roughly, two alternatives for speeding up computations co-exist in these resource constrained devices: parallel processing and hardware acceleration. Needles to say, multi-core devices are clearly the next step in embedded systems due to clear technolog...

متن کامل

Comparing Hardware Performance of Round 3 SHA-3 Candidates using Multiple Hardware Architectures in Xilinx and Altera FPGAs

In this paper we present a comprehensive comparison of all Round 3 SHA-3 candidates and the current standard SHA-2 from the point of view of hardware performance in modern FPGAs. Each algorithm is implemented using multiple architectures based on the concepts of folding, unrolling, and pipelining. Trade-offs between speed and area are investigated, and the best architecture from the point of vi...

متن کامل

Investigating the Potential of Custom Instruction Set Extensions for SHA-3 Candidates on a 16-bit Microcontroller Architecture

In this paper, we investigate the benefit of instruction set extensions for software implementations of all five SHA-3 candidates. To this end, we start from optimized assembly code for a common 16-bit microcontroller instruction set architecture. By themselves, these implementations provide reference for complexity of the algorithms on 16-bit architectures, commonly used in embedded systems. F...

متن کامل

Design of a novel congestion-aware communication mechanism for wireless NoC architecture in multicore systems

Hybrid Wireless Network-on-Chip (WNoC) architecture is emerged as a scalable communication structure to mitigate the deficits of traditional NOC architecture for the future Multi-core systems. The hybrid WNoC architecture provides energy efficient, high data rate and flexible communications for NoC architectures. In these architectures, each wireless router is shared by a set of processing core...

متن کامل

Hardware Implementation of the SHA-3 Candidate Skein

Skein is a submission to the NIST SHA-3 hash function competition which has been optimized towards implementation in modern 64-bit processor architectures. This paper investigates the performance characteristics of a high-speed hardware implementation of Skein with a 0.18 μm standard-cell library and on different modern FPGAs. The results allow a first comparison of the hardware performance fig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010